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ABSTRACT 

Tropical cyclone (TC) track forecasts will always contain uncertainty. This thesis 

relates ranges (bins) of uncertainty measurements with historical TC track forecast errors, 

to provide statistically distinct error distributions for use with the Monte Carlo (MC) 

method. T-test and Kolmogorov-Smirnov tests are used to confirm distinctness among 

error distributions associated with the bins of either European Center for Medium-Range 

Weather Forecasts (ECMWF) ensemble spread or TVCN Goerss Predicted Consensus 

Error (GPCE). The statistical tests indicate that distinct error distributions (consisting of 

official TC forecast error, ECMWF ensemble mean [EMN] error, or TVCN error) exist 

when using four bins of uncertainty (of either uncertainty measurement). Furthermore, 

error distributions of ECMWF EMN error are distinct with five bins of ECMWF 

ensemble spread. Along- and cross-track official errors could not be directly related to 

either measurement of uncertainty at even three bins. These results suggest that the 

National Hurricane Center test and evaluate the use of four bins of uncertainty for 

operational use with the MC method to further improve its Wind Speed Probability 

products and overall TC track forecasts. TC forecasters should also exploit the more 

impressive relationship established using five bins ECMWF ensemble spread with 

ECMWF EMN error. 
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I. INTRODUCTION 

Accuracy in forecasting the tracks of tropical cyclones (TC) has greatly improved 

over the past decades. Despite these improvements, the consumers of such forecasts  

(e.g., Department of Defense, local officials, businesses, general public) demand even 

more accurate information. This demand is not unwarranted, considering that the 

potential costs of inaccurate TC track forecasts include the livelihood of millions of 

coastal dwelling citizens and an unfathomable value in lost resources, infrastructure, 

personal property, and lives. While the need is straightforward, the complexities and 

challenges to formulating accurate TC track forecasting are much less so. 

There exist numerous sources of forecasting error that can be minimized, but 

cannot be eliminated: this is why weather forecasts are not (and never will be) perfect. 

These sources of error are embedded in the very tools—the observations, model physics, 

mathematical methods, and assumptions—that forecasters must use to make a forecast. 

We are, however, able to advance our ability to forecast effectively by progressively 

minimizing these sources of error, while also increasing our computational power.  

Once we accept that error will always be present in a forecast, the next best 

solution besides eliminating the error is to quantify and characterize the error. Ensembles 

are a great tool for identifying where and when the inherent error will grow and manifest. 

Through utilizing many ensemble members based on varying initial conditions, 

parameterizations, etc., a range of possible outcomes is revealed to the forecaster. We 

assume that the truth lies somewhere within the range of outcomes, and that when the 

range is relatively small (large), there is a high (low) degree of certainty in the forecast. 

This thesis aims to quantify the degree of uncertainty represented by an ensemble 

and relate it to TC track forecast error. If successful, this relationship will allow 

forecasters to apply a unique range of possible forecast errors to each individual TC. The 

benefit of such a relationship will be more representative TC track forecasts and 

associated wind speed probability (WSP) products from the National Hurricane Center 

(NHC). Improvements to these products will not only provide the consumers with the 
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best forecast possible, but also relay the level of uncertainty unique to a given storm. This 

will better inform decision makers to help protect all assets at risk. 
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II. BACKGROUND 

A. NATIONAL HURRICANE CENTER’S WIND SPEED PROBABILITY 
PRODUCT 

The National Hurricane Center (NHC) has produced probability products since 

the early 1980s; however, a significant advancement in such products was implemented 

in 2006 (DeMaria et al. 2009). The NHC’s TC WSP product incorporates uncertainties in 

track, intensity, and wind structure. According to DeMaria et al., a Monte Carlo (MC) 

method is utilized to give the probability of winds reaching or exceeding 34, 50, and 

64 kt at a given time and location. A random sample of 1,000 errors is drawn using the 

MC method from a distribution of official track and intensity errors based on the most 

recent five years of data. These samples are then added to the official forecast to produce 

1,000 realizations (plausible forecasts). Probabilities that wind speeds will reach a given 

threshold can then be calculated by identifying how many of the realizations reach the 

threshold for a given time and location (2009). 

Figures 1 and 2 are examples of the WSP product in text and graphical form, 

respectively. The NHC explains that the text product provides two types of probabilities, 

onset and cumulative, for each location listed. The former refers to the probability that 

the threshold will be met during the specific time window, while the latter refers to  

the probability that the threshold will be met at any time up to that forecast hour.  

The graphical form of the product only informs the user of the cumulative probability that 

the given threshold will be met at any time up to the given forecast hour (NHC 2014). 

While the graphical form only gives one probability type and does not include exact 

percentages, it enables the user to see the approximate probabilities anywhere on  

the map. 

These products will benefit from the research reported in this thesis through the 

refinement of the distributions from which the 1,000 realizations produced by the MC 

method are drawn. By drawing from a refined set of errors, the realizations will adjust 

with the nature of the uncertainty for any given storm. Thus, the probabilities may 
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increase or decrease (and the probability swath may widen or narrow) to provide a more 

customized TC track forecast. 

Figure 1.  WSP Product–Text Version  

 
This truncated version of the text form of the WSP product provides two probabilities: 
onset and cumulative. The onset probability (the first of each pair of numbers) gives the 
likelihood that the threshold will be met during that specific time window. The 
cumulative probability (indicated with parenthesis) gives the likelihood that the threshold 
will be met at any time up to that forecast hour. Adapted from NHC, 2014: Tropical 
cyclone wind speed probabilities products. Accessed on 19 January 2016. [Available 
online at http://www.nhc.noaa.gov/pws_example.shtml.] 



 5

Figure 2.  WSP Product–Graphical Version 

 
The graphical version of the WSP product gives the cumulative probability that the given 
threshold will be met at any time up to the given forecast hour. Source: NHC, 2014: 
Tropical cyclone wind speed probabilities products. Accessed on 19 January 2016. 
[Available online at http;//www.nhc.noaa.gov/gifs/WindSpeedProbGraphic.gif.] 

B. DESCRIPTION OF ENSEMBLES 

The primary purpose of ensemble forecast systems is to quantify uncertainty in a 

forecast. This can be accomplished through single-model ensembles or multi-model 

ensembles (consensus models), both of which NHC has access to. 

1. European Centre for Medium-Range Weather Forecasts  
Ensemble  

The European Centre for Medium-Range Weather Forecasts (ECMWF) global-

model ensemble is comprised of 51 members. Fifty of the members are created using a 



 6

slightly perturbed variation of the ECMWF analysis while the fifty-first member is 

created using the original analysis and a coarser resolution than the deterministic forecast. 

This ensemble is a powerful tool for estimating forecast uncertainty via examination of 

the spread and/or grouping of all the members’ forecasts. The global ensemble forecast 

system is the basis for many products related to midlatitude and tropical circulation 

systems. For this thesis, ensemble spread is defined as the average distance from the 

forecast TC position in each member to the ensemble mean (EMN) forecast TC position. 

The ECMWF is commonly recognized as the most accurate weather model available. 

Figure 3 is a comparison of six of the top weather models: GFS (Global Forecast 

System), ECMWF (EC in the legend of Figure 3), UKMET (United Kingdom 

Meteorology), FNMOC (Fleet Numerical Meteorology and Oceanography Center), 

CDAS (Climate Data Assimilation System), and CMC (Canadian Meteorological 

Centre). The data shows that the ECMWF consistently outperforms the other models at 

predicting day 5 500 hPa heights from 2009–2013.  
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Figure 3.  Anomaly Correlations of 500 hPa Height 5-Day Forecasts from 
Several Operational Numerical Prediction Models 

 
A comparison of six leading weather models: GFS, ECMWF, UKMET, FNMOC, CDAS, 
and CMC. The data above shows how well each model has performed at forecasting day 
5 500 hPa anomalous heights from 2009–2013 for both the northern Hemisphere (top) 
and southern Hemisphere (bottom). A y-value of 1 represents a perfect forecast as 
compared to analyzed heights. Source: NCEP: Accessed 22 February 2016. [Available 
online at http://www.emc.ncep.noaa.gov/gmb/STATS/html/aczhist6.html.] 

2. Consensus Models 

Consensus models are utilized based on the idea that the average of two or more 

imperfect models will, on average, be more accurate than any single model forecast. This 

is similar to the concept of creating an ensemble from a single model by running it many 

times with slightly perturbed initial conditions. However, a notable difference between 
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these two approaches to making an ensemble is that consensus models may be comprised 

with as few as two members (ranging up to approximately 5–7), while single-model 

ensembles frequently have dozens of members. The TVCN1 is a consensus model 

frequently used by the NHC to help predict the track of TCs and is used in this thesis 

along with the ECMWF ensemble.  

C. GOERSS PREDICTED CONSENSUS ERROR 

Another tool to utilize consensus models was created by Goerss (2007) to help 

identify and quantify forecast track uncertainty. The Goerss predicted consensus error 

(GPCE) provides a way to statistically estimate consensus model error (DeMaria 2013). 

According to Goerss, the tool works by taking into account numerous parameters such as 

ensemble spread, initial and forecast TC intensity, initial TC position, and forecast 

displacement. Of these parameters, Goerss found ensemble spread to be the most 

important, followed by initial and forecast TC intensity (Goerss 2007).  

Goerss established relationships between the aforementioned parameters and 

consensus TC track error. He utilized the consensus model defined as CONU2 in his 2007 

study. Goerss then established a procedure by which forecast CONU TC track errors 

could be utilized with stepwise linear regression-based parameters to establish forecasts 

for each forecast hour (2007). 

Finally, using the predicted CONU TC forecast errors derived from the linear 

regression models, combined with varying constants for each forecast hour, Goerss 

created GPCE circles. The circles are defined by a radius based on spread of model 

forecasts in CONU and centered at the forecast position for each forecast hour of the 

CONU. These circles were designed so that they would contain the verifying TC position 

~70% of the time (Goerss 2007). Therefore, this circle provides an estimate of forecast 

                                                 
1 TVCN is comprised of five models: GHMI (interpolated GFDL [Geophysical Fluid Dynamics 

Laboratory]), EGRI (interpolated UKMET with subjective quality control), HWFI (interpolated HWRF 
[Hurricane Weather Research and Forecast System]), AVNI (interpolated GFS), and EMXI (interpolated 
ECMWF model) E. Hendricks, personal communication, March 1, 2016).  

2 CONU is a consensus model comprised of at least two of the following models: GFDI (interpolated 
GFDL), AVNI, NGPI (adjusted NGPS [Navy Operational Global Prediction System]), UKMI (interpolated 
UKMET), and GFNI (interpolated Navy GFDL). 
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uncertainty similar to that obtained from the ensemble spread of a single-model 

ensemble. Since Goerss’s work in 2007, the GPCE has been implemented at the NHC 

using the TVCN consensus model and is how this study incorporates the GPCE as an 

error estimate. 

D. COMBINING THE MC METHOD WITH THE GPCE 

As previously described, the MC method is used to draw 1,000 samples from the 

previous 5-year official forecast error distribution of track and intensity. While this 

technique was beneficial, it treated all TCs and their forecast errors as equal. In other 

words, the forecast track errors of all prior TCs in the past 5 years were grouped together 

to create a distribution, randomly drawn from, and then applied to each new TC that 

formed in the corresponding basin. However, by utilizing the GPCE, TCs (past and 

present) can be grouped together to form bins with distinct characteristics based on their 

estimated forecast uncertainty.  

Hauke (2006) researched the possibility of binning TC errors into terciles based 

on the TC forecast GPCE value (calculated using the CONU consensus model) for a 

given forecast hour. The resulting terciles represented TC forecasts with low, average, 

and high degrees of uncertainty. Hauke’s work also examined the possibility of using the 

GFS ensemble spread as the parameter to create the three bins (Hauke, 2006). The goal of 

his work was to discover whether the error distributions associated with each of the three 

bins (for both approaches) were significantly different. If so, then that would establish a 

more unique error distribution for the MC method to draw from to provide a more refined 

wind probability distribution. His studies utilized errors calculated from the official track 

forecasts produced by NHC and investigated this potential relationship using the total 

track errors (FTE), along-track errors (ATE), and cross-track errors (XTE) (Hauke, 

2006). ATE is defined as the component of the FTE that is parallel to the storm track. 

Positive (negative) errors represent forecast positions ahead (behind) of actual TC 

position. XTE is defined as the component of the FTE that is perpendicular to the storm 

track. Positive (negative) errors represent forecast positions to the right (left) of the actual 

TC position. 
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According to Hauke, binning TCs into terciles using GPCE values proved to 

create statistically different error distributions in all three categories (FTE, ATE, and 

XTE). These results suggest that the MC method would benefit from such stratification. 

However, the results of binning TCs into terciles using GFS ensemble spread was not as 

successful. Hauke (2006) concluded that such stratification would not benefit the MC 

method and may even degrade its performance. 

The lack of skill in using GFS ensemble estimates of uncertainty may be due in 

part to limitations in the size of the GFS ensemble (21 members) or in how it is 

perturbed. However, due to the impressive track record of the ECMWF and the increased 

ensemble size relative to the GFS, this thesis aims to utilize its estimates of uncertainty to 

accomplish what could not be established using the GFS ensemble. 

E. OTHER RELEVANT WORK 

A crucial element to improving the MC method through the use of uncertainty 

information is to provide statistically distinct error distributions from which to draw. The 

uncertainty-skill relationship is thought to vary due to differing storm characteristics. 

While Hauke (2006) stratified by magnitude of uncertainty, Neese (2010) attempted to 

stratify by storm location (sub regions) within the Atlantic basin. While Neese’s results 

were inconclusive, his work suggests the possibility that benefit may be attained by 

binning error distributions based on TC location.  

Next, Pearman (2011) studied the effectiveness of using a GPCE ellipse that 

contained both along- and cross-track uncertainty estimates instead of the GPCE circle. 

Pearman used a Grand Ensemble (combination of multiple ensembles) to provide the data 

for his work. While the results of his work indicate that the GPCE ellipse performs as 

well (if not better in some instances) as the GPCE circle, this method still remains 

experimental today (Pearman 2011).  

F. GOALS OF THESIS 

The goal of this thesis is to extend the uncertainty-skill relationship by examining 

a longer data set encompassing multiple years of TC forecasts. Presumably, the bin size 
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of uncertainty can be further refined to establish a greater number of bins producing 

statistically different error distributions as measured by distribution mean and shape. A 

larger number of discrete bins allows for a more continuous relationship between forecast 

error and estimated uncertainty to be derived. This process was repeated for two different 

measures of uncertainty: ECMWF ensemble spread and the GPCE radius as calculated 

from the TVCN. This study used the official forecast error to represent skill in three 

different ways: FTE, ATE, and XTE. Finally, each measure of uncertainty was used in 

conjunction with its corresponding model’s forecast error to establish their ability to 

predict the parent model’s error as opposed to official track error, which utilizes objective 

guidance. If these results are significantly different compared those found using official 

errors, then applying the wind probability model to that forecast might be more helpful. 

This thesis provides a technique to be used in conjunction with MC method that 

will provide unique error distributions for multiple levels of uncertainty as conveyed by 

the ECMWF ensemble or TVCN GPCE radius. This process allows for a more tailored 

forecast for each new TC, and should result in improvements to NHC’s WSP products. 
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III. METHODOLOGY 

The overall approach used in this study was to calculate TC forecast track errors 

for the official NHC forecasts as well as two models and examine the errors relative to 

estimates of forecast uncertainty. Specifically, the ECMWF ensemble, TVCN consensus 

model, and NHC official forecasts were used. The ECMWF ensemble spread and TVCN 

GPCE radius provide the uncertainty estimates.  

A. DATA 

The data analyzed in this thesis spans the years 2007 through 2015, and come 

from all forecasts for TCs that occurred over the Atlantic basin during that time. That 

includes 123 named storms (67 tropical storms [TS] and 56 hurricanes). Omitted TCs 

include Hurricane Noel and TS Olga (’07), TS Marco (’08), and TS Nicole (’10) due to 

missing or incomplete data. Data were retrieved from The Observing System Research 

and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) 

and the NHC Automated Tropical Cyclone Forecast (ATCF) system. These data systems 

provided the historical official track forecasts and accompanying ECMWF and TVCN 

model data for this study.  

1. TIGGE 

All of the ECMWF ensemble data were obtained via TIGGE, an archive of 

ensemble forecast data from ten global numerical weather prediction (NWP) centers that 

is used primarily for scientific research (Santoalla, 2015). Specifically, the forecast from 

each of the available 50 members of the ECMWF ensemble is included. Each member of 

the ensemble provides a TC forecast (if applicable) for each forecast run during the TC’s 

existence. The ECMWF ensemble is run at 0000 UTC and 1200 UTC. The TIGGE data 

include the storm name, TC position (latitude and longitude), central pressure, and wind 

speed at each forecast hour (12, 24, 36, 48, 60, 72, 84, 96, 108, and 120).  
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2. ATCF 

The ATCF data set is produced operationally by NHC. The data are contained in 

three files named: A-Decks, B-Decks, and E-Decks. These decks contain both forecast 

verification and guidance products for each TC.  

a. A-Decks 

The A-Decks contain the official TC track and intensity forecasts along with other 

NWP guidance. The official forecasts are those which are created and distributed by the 

NHC. The official forecasts are provided every six hours and include the forecast hours 

of 3, 12, 24, 36, 48, 72, 96, and 120 hours. The official forecasts do not contain the 60, 

84, and 108 forecast hours, but they are derived through interpolation to allow for 

comparisons with other products. These official forecasts provide the basis from which 

the WSP products are created. For the purpose of this work, they are used with the B-

Decks to establish the official FTE. 

b. B-Decks 

The B-Decks contain the best track (verified) positions for each TC. The best 

track position is determined during the post-storm analysis. It takes into account all 

relevant information that may not have been available during the storm for inclusion in 

analyses and forecasts. The best track data includes storm number, position, central 

pressure, and wind speed every six hours. All track errors in this study were calculated 

from the forecast position compared to the best track positions. 

c. E-Decks 

The E-Decks contain guidance used to provide a measure of confidence in the 

track forecast consensus aids. For the purpose of this thesis, the GPCE associated with 

the TVCN will be utilized. The GPCE value is the radius of a circle that is calculated to 

contain the true TC position ~70% of the time. TVCN is run every six hours and provides 

information at all applicable forecast hours (12, 24, 36, 48, 60, 72, 96, and 120). The E-

Decks are also interpolated to obtain the 84 and 108 forecast hours.  
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B. DATA QUALITY CONTROL 

1. Unrepresentative Errors 

After data retrieval, a filter was applied to exclude any data that originated from a 

time when the TC was not categorized at a tropical storm (winds ≥ 34 kt) or hurricane 

(winds ≥ 64 kt). The purpose of this filter is to reduce cases where a TC center may be 

subjective or indistinct. Such TCs may lead to forecasts with unrepresentative errors that 

would pollute the data sample. In addition, TCs that became extratropical were not 

included once the transition occurred.  

2. Ensuring Proper Data Pool 

While a large data pool is desired for statistical work, the data samples need to be 

examined to ensure that they are not statistically different. Given that models evolve over 

time, the forecast skill from one year to a later year could be substantially different. In 

other words, we had to ensure that data from each year (2007–2015) were similar enough 

to be pooled for analysis. In order to accomplish this, two statistical tests where utilized: 

a two-sample t-test and a two-sample Kolmogorov-Smirnov test (KS-test). Each test was 

performed with the data from 2015 compared with the data from each of the prior years.  

a. Two-sample t-Test 

A two-sample t-test is used to determine whether the means of two samples are 

statistically different from each other. It assumes that each sample follows a Gaussian 

(normal) distribution. In this thesis, the null hypothesis of the t-test is that the means of 

the data samples (years) are not significantly different. Thus by testing all of the years 

against 2015, we can see if our entire sample is statistically the same or if advancements 

in the models over the years have caused the data to become statistically different. The 

version of the t-test utilized in this study uses a 95% confidence level and assumes 

unequal variances of the samples. 

b. Two-sample KS-Test 

A two-sample KS-test is used to determine whether the distributions of two 

samples are statistically the same. This test evaluates the uniqueness of the shape of each 
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distribution rather than just the means of the distribution as in the t-test. In this thesis, the 

null hypothesis of the KS-test is that the distributions of both data samples are 

statistically the same. This is the same as saying that both data samples are drawn from 

the same distribution. A 95% confidence level was also utilized with the KS-test.  

c. Testing Results 

After all of the tests were conducted, it became apparent that 2015 contained 

unusually low errors, as calculated using the ECMWF EMN forecast. This resulted in 

rejected null hypotheses for many comparisons, particularly for 2010 and 2011. This 

suggests that there are differences in the model performance from year to year when 

compared to 2015. In order to examine whether this variability was caused by a 

characteristic of the 2015 sample, the same testing was conducted using the data from 

2014 compared with the data from each of the prior years. Results from all of the testing 

for both the ECMWF and TVCN models are shown in Tables 1, 2, and 3. Green cells 

indicate that the null hypothesis failed to be rejected, while red cells indicate the null 

hypothesis was rejected.  

While it appears that 2010 and 2011 have statistically different ECMWF EMN 

errors at first, the use of a second set of comparisons in Table 2 shows that all of the years 

are more similar than not. Keeping in mind that this relatively small number of years may 

have outliers that skew the errors of certain years, this data set appears to be similar 

enough throughout the years and forecast hours to be grouped together and certainly did 

not exhibit any systematic trend in performance over time. Consequently, the full set of 

years was used for all subsequent analysis in this study. 
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Table 1.   Statistical Testing of ECMWF EMN Error: 2015 vs. Other Years 

 
Results of statistical testing of ECMWF EMN error comparing 2015 to all other years. 
Green cells indicate a failure to reject the null hypothesis. Red cells indicate a rejection of 
the null hypothesis. 

Table 2.   Statistical Testing of ECMWF EMN Error: 2014 vs. Other Years 

 
Results of statistical testing of ECMWF EMN error comparing 2014 to all other years. 
Green cells indicate a failure to reject the null hypothesis. Red cells indicate a rejection of 
the null hypothesis. 

Table 3.   Statistical Testing of TVCN Error: 2015 vs. Other Years 

 
Results of statistical testing of TVCN EMN error comparing 2015 to all other years. 
Green cells indicate a failure to reject the null hypothesis. Red cells indicate a rejection of 
the null hypothesis. 
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C. BINNING BY ESTIMATED UNCERTAINTY 

A goal of this study is to examine the forecast uncertainty to forecast error 

relationship. While a continuous relationship is desired, the approach used to get there is 

to subdivide the uncertainty into discrete bins and test for the statistical uniqueness of 

their associated error distributions. If those subdivisions prove to provide unique error 

distributions, then increase the number of subdivisions until statistical uniqueness is lost. 

1. Constructing the Bins 

While Hauke (2006) previously showed that binning by terciles (three bins) of 

forecast uncertainty proved beneficial for CONU GPCE, this study begins with three bins 

as well for the ECMWF ensemble spread and TVCN GPCE in order to confirm these 

previous results based on data from one year. In order to establish the three bins, all of 

the pairs of uncertainty measures and corresponding official forecast errors were arranged 

from least to greatest uncertainty for each forecast hour. The values of uncertainty that 

correspond to one-third and two-thirds of the data population were used as the cutoff 

values to create the three bins. The goal was to create three bins with an equal number of 

data points; however, that would have required splitting up a set of data points with the 

same measurement of uncertainty into different bins for some cases. To avoid this, the 

bins are close to being equal but are not exactly equal for all forecast hours. The exact 

ranges for all bins established in this work are in Tables 16–21 and can be found in the 

Appendix.  

2. Checking for Unique Error Distributions 

After the bins were established, the next step was to check the error distributions 

for uniqueness. To accomplish this, the t-test and KS-test were utilized again. The only 

change from the variations of the statistical tests utilized for the year to year comparison 

is related to the t-test. In order to compare the distributions of each bin, a right-tailed 

version of the t-test was used. This version of the test only checks if the mean of the 

second sample (e.g., Bin 2) is greater than that of the first sample (e.g., Bin 1). The right-

tailed t-test was chosen because we are assuming that each progressive bin will have a 

larger mean than the previous. Both tests were then used to compare the first tercile 
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(lowest uncertainty) to the second. The tests were performed again between the second 

and third (highest uncertainty) bins. For this use of the statistical tests, the desired result 

was to reject the null hypotheses. That would indicate that the different bins of 

uncertainty have statistically different means and/or distributions, and thus can be used 

independently by NHC in the MC method.  

D. MAXIMIZING THE NUMBER OF BINS 

Having verified that the three bins of uncertainty estimates produce unique error 

distributions, the next step was to repeat this process using progressively more bins. Bins 

are identified using a range of 1 to N (where N = total number of bins). Bin 1 always 

represents the least amount of uncertainty, while bin N represents the greatest level of 

uncertainty as given by either ensemble spread or GPCE value. N level of bins were 

created using the same principles as described for three bins.  

Finally, the bins were all compared using the t-test and KS-test again. The format 

for comparing the bins was as follows: bin 1 vs. bin 2, bin 2 vs. bin 3, … , bin N-1 vs. bin 

N. This process of increasing the number of bins was repeated until the sample of errors 

within the bins lacked statistical difference in their means and distribution. At this point, 

the data set was not sufficiently robust to draw meaningful conclusions regarding finer 

ranges of uncertainty. 

E. EXAMINING ALONG- AND CROSS-TRACK ERRORS 

Another possible relationship that yields benefit is comparing the distributions of 

official forecast ATE and XTE versus each of the measures of uncertainty. This process 

was nearly the same as that of the official FTE approach. The only differences are  

that the error distribution for each bin represented either ATE or XTE, and the two-tailed 

t-test was utilized. The reason for changing to the two-tailed t-test is because the 

assumption that the mean of each successive bin will increase is no longer valid. In fact, 

we expect the mean to stay near zero given the fact that there should be an approximately 

equal number of positive errors as negative errors.  
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The goal of performing these two additional sets of comparisons was to further 

fine tune the information that can be extracted from historical error data. Relationships 

defined between ATE and XTE versus an uncertainty measurement provides forecasters 

even more detailed information regarding the uncertainty. Specifically, it helps separate 

the uncertainty in the track of the TC from uncertainty in the speed of the TC. 

F. COMPARING MODEL ERROR WITH MEASUREMENTS OF 
UNCERTAINTY 

Finally, two more relationships worth analyzing are those between the ECMWF 

EMN error and spread, and between the TVCN error and GPCE radius. While relating 

measurements of uncertainty with official FTE provides the most directly relevant 

information to NHC, making the same relationships with model error provides additional 

information about model performance that is useful to forecasters. By establishing these 

relationships, forecasters can opt to modify either of these model outputs by applying the 

MC method to the model output using its own unique error distributions. These 

relationships were investigated using the techniques as described above. First, three bins 

were established and then the number of bins were maximized to extract the finest ranges 

of uncertainty that the data sample would allow to contain statistically unique means and 

distributions.  
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IV. ANALYSIS AND RESULTS 

A. RELATING UNCERTAINTY MEASUREMENTS WITH OFFICIAL FTE 

1. ECMWF Ensemble Spread 

In general, we expect that when uncertainty in a forecast increases, the error 

associated with that forecast will increase, too (Scherrer, 2002). To demonstrate this 

relationship, the ECMWF ensemble spread is plotted versus official FTE at forecast  

hour 60 in Figure 4. Note that forecast hour 60 was chosen to demonstrate the expected 

patterns for all forecast hours in the following figures. This forecast hour is in the middle 

of the total forecast period and provides a good representation of error characteristics in 

the other forecast hours unless otherwise noted. The diagonal green line represents a one-

to-one direct relationship between spread and FTE. While such an exact relationship is 

clearly not present, a trend of increasing FTE with increasing spread can be identified 

with the exception of a handful of outliers representing very high (low) spread with very 

low (high) FTE. This relationship does not illustrate a one-to-one relationship; instead the 

relationship is much steeper (i.e., very little variation in spread corresponds to large 

variations in FTE). The FTE tends to increase quickly with small increases in spread. 

While Figure 4 is valid for forecast hour 60, the other forecast hours display similar 

relationships. The range of spread and errors tend to be lower (higher) at the shorter 

(longer) forecast hours. The presence of such a trend indicates that a relationship likely 

exists between the uncertainty measurement and official FTE. Although not examined in 

this study, the extreme outliers may represent instances with a greatly reduced number of 

contributing ensemble members.  

2. TVCN GPCE Radii 

The relationship between TVCN GPCE radii and official FTE is shown in Figure 

5. This relationship is very similar to that of ECMWF ensemble spread and official FTE. 

Once again, the relationship is one in which very little variation in spread corresponds to 

large variations in FTE. A notable difference between Figure 4 and Figure 5 is the range 

of the uncertainty measurement. The range of the GPCE values is significantly smaller 
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than that of the spread, and contains considerably fewer outliers. This lack of extreme 

outliers in the GPCE certainly reflects a less-sensitive measure of uncertainty as  

the variability in the multi-model consensus may not be as extreme as the ECMWF 

ensemble, or perhaps the GPCE calculation itself limits variability.  

Figure 4.  ECMWF Ensemble Spread vs. Official FTE at 60 Hours 

 
A scatterplot of ECMWF ensemble spread vs. official FTE with one-to-one line (solid 
green).  
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Figure 5.  TVCN GPCE Radius vs. Official FTE at 60 Hours 

  
A scatterplot of TVCN GPCE radii vs. official FTE with a one-to-one line (solid green).  

B. ESTABLISHING BINS WITH MEASUREMENTS OF UNCERTAINTY 

In order to exploit the relationship found between the measurements of 

uncertainty and official FTE, the data were divided into N bins as noted in the 

methodology section. Each bin was plotted as a histogram to show the distribution of 

official FTE for each range of uncertainty. The error distributions must be significantly 

different from the next (as evaluated by the t-test and KS-test) for maximum benefit to be 

gained from breaking the data into N ranges of uncertainty. 

When multiple bins of uncertainty are created, it is expected that the errors 

associated with each progressive bin will follow the general trend of increasing error size 

and variability. Specifically, as bin number increases (increasing forecast uncertainty), 

one expects the mean and standard deviation of the error distributions to increase. 

Another expected trend is that the number of small official FTE decreases with increasing 

uncertainty while the tail of the distribution (representing larger FTE) grows.  
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1. Using ECMWF Ensemble Spread to Establish Bins 

Histograms that correspond to the three bins of ECMWF ensemble spread are 

shown in Figure 6. The top histogram represents forecasts that contained the lowest 

measurements of uncertainty (≤ 132 nm in this case) while the middle and lower 

histograms show forecasts with successively larger measurements of uncertainty. The 

three histograms appear to represent error distributions similar to what is expected. As the 

level of uncertainty increases, the mean and standard deviation of the error distributions 

increase as well. The mean increases from approximately 135 to 167 to 224 nm while the 

standard deviation increases from 78 to 96 to 149 nm. Through visual inspection, these 

plots suggest that they each represent a unique error distribution with different means and 

variance. A similar pattern can be seen in each of the other forecast hours which are not 

shown. 

Histograms corresponding to the four bins of ECMWF ensemble spread are 

shown in Figure 7. With four ranges of uncertainty, the data still behave as expected in 

general. The mean increases from 129 to157 to 187 to 229 nm while the standard 

deviation increases from 76 to 85 to 112 to 157 nm. However, the distinctness becomes 

slightly less apparent through visual inspection, especially when comparing bins one and 

two. 

Histograms that correspond to the five bins of ECMWF ensemble spread are 

shown in Figure 8. With five bins, visual inspection begins to reveal similarities between 

multiple bin comparisons. The distributions between bins one and two appear quite 

similar as well as that between bins four and five. However, the mean still increases with 

each bin of uncertainty from 123 to 151 to 175 to 190 to 238 nm while the standard 

deviation increases from 72 to 80 to 102 to 120 to 160 nm. Although the mean and 

standard deviation still change as expected, a point will come where their changes in 

value will not be sufficient to be deemed statistically unique distributions. This result 

happens because the sample size of each bin becomes too small to draw meaningful 

conclusions. In this case, the sample sizes have been reduced to 135 data points for each 

bin. 
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Figure 6.  Three Bins of ECMWF Ensemble Spread 

 
Histograms created by dividing ECMWF into three bins show official FTE distributions 
for each range of uncertainty.  

Figure 7.  Four Bins of ECMWF Ensemble Spread 

 
Histograms created by dividing ECMWF into four bins show official FTE distributions 
for each range of uncertainty.  
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Figure 8.  Five Bins of ECMWF Ensemble Spread 

 
Histograms created by dividing the ECMWF ensemble spread into five bins show official 
FTE distributions for each range of uncertainty. 

2. Using TVCN GPCE Radii to Establish Bins 

Histograms corresponding to the three bins of TVCN GPCE radii are shown in 

Figure 9. These histograms share the same characteristics as those created using ECMWF 

ensemble spread. The mean of each successive bin increases from 144 to 175 to 209 nm 

while the standard deviation increases from 90 to 104 to 144. Each of the histograms 

appears to belong to a distinct error distribution where the mean and standard deviation 

increases with higher levels of uncertainty. This same pattern can be seen in each of the 

other forecast hours not shown. 

Histograms that correspond to the four bins of TVCN GPCE radii are shown in 

Figure 10. These error distributions also begin to become less visually distinct. The 

comparison of bins two and three begins to reveal similarities in the location and shape of 
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the error distributions. However, the means still increase from 140 to 163 to 179 to 

222 nm while the standard deviation increases from 91 to 98 to 108 to 154 nm. Thus the 

distributions still display enough distinctness to proceed with five bins. While the means 

and standard deviations of the bins still increase with uncertainty, the increases become 

smaller and two of the bins begin to resemble each other, especially at the midrange 

forecast hours. 

Histograms corresponding to the five bins of TVCN GPCE radii are shown in 

Figure 11. While these distributions maintain slightly more useful distinction than those 

created using five bins of ECMWF ensemble spread (Figure 8), the trend is still to 

become less distinctive. This pattern of becoming less distinct is observed in many of the 

other forecast hours as well. It is common for two sets of bins to begin taking on similar 

values for the mean and standard deviation. The mean of each bin increases from 144 to 

154 to 168 to 187 to 227 nm while the standard deviation changes from 98 to 88 to 103 to 

119 to 154 nm. Note that the outlier in bin one caused the standard deviation to be larger 

than that of bin two. 

Figure 9.  Three Bins of TVCN GPCE Radii 

 
Histograms created by dividing the TVCN GPCE radii into three bins show official FTE 
distributions for each range of uncertainty.  
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Figure 10.  Four Bins of TVCN GPCE Radii 

 
Histograms created by dividing the TVCN GPCE radii into four bins show official FTE 
distributions for each range of uncertainty.  

Figure 11.  Five Bins of TVCN GPCE Radii 

 
Histograms created by dividing the TVCN GPCE radii into five bins show official FTE 
distributions for each range of uncertainty.  
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C. RESULTS OF STATISTICAL TESTING  

After all of the bins were established and the associated histograms where created 

and compared in the previous section, the data from each bin were statistically compared 

with each neighboring bin to check for distinctness. While visual inspection is a good 

first approximation of determining distinctness between two distributions, the t-test and 

KS-test use all the data points to determine if the null hypothesis should be rejected (H = 

1). If not, the tests will result in a failure to reject the null hypothesis (H = 0). The null 

hypothesis for the t-test is that the mean of the two samples drawn from assumed 

Gaussian distributions are equal. The t-test’s alternative hypothesis is that the mean of the 

second sample drawn from the assumed Gaussian distribution is greater than that of the 

first sample. The null hypothesis for the KS-test is that the errors of both bins came from 

the same distribution, while the alternative hypothesis is that the errors of both bins come 

from different distributions.  

1. ECMWF Ensemble Spread versus Official FTE 

Results from the statistical testing when dividing ECMWF ensemble spread into 

three bins are shown in Table 4. A quick glance at the table reveals that nearly every 

comparison at every forecast hour rejects each test’s null hypothesis. This indicates that 

the associated Gaussian error distributions of each bin are deemed to have different 

means (t-test), and each sample (bin) of data comes from different distributions (KS-test) 

at a 95% confidence level. These results confirm the idea that TC forecasts can be 

subdivided into three ranges of ECMWF ensemble spread, each with its own distinct 

error distribution that the MC method can draw from to better relay tailored uncertainty 

information for any given TC. 

Results from the statistical testing when dividing ECMWF ensemble spread into 

four bins are shown in Table 5. The results from these tests are not quite as concrete 

considering that 14 of the 60 tests failed to reject the null hypothesis. However, only 

three pairs of tests did so for the same bin comparison and forecast hour, thus there is still 

significant benefit to be attained by establishing four bins. When the t-test’s null 

hypothesis is rejected, and the KS-test’s null hypothesis fails to be rejected (8 of the 14 
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failed tests), valuable information is still obtained by comparing the individual 

distributions. This situation indicates that while the shape (variance) of the two 

distributions may not be different, their means are. Two error distributions of equal shape 

but different means will still provide the MC method with different errors to draw from. 

Results from the statistical testing when dividing ECMWF ensemble spread into 

five bins are shown in Table 6. The statistical analysis of dividing the ECMWF ensemble 

spread into five bins shows that 36 of the 80 tests fail to reject the null hypothesis. More 

importantly, 13 pairs of tests failed to reject the null hypothesis for the same bin 

comparison and forecast hour. This indicates that there was no benefit attained by adding 

the fifth bin at the corresponding forecast hours. For example, Table 6 it can be seen that 

the comparison of Bin 1 and Bin 2 includes both tests rejecting the null hypothesis  

for 6 of the 10 forecast hours. This implies that the MC method will not improve by 

drawing from different distributions at those forecast hours, because the associated error 

distributions are statically the same. 
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Table 4.   Statistical Results of ECMWF Spread vs. Official FTE (3 Bins) 

 
T-test and KS-test results comparing official FTE error distributions obtained via three 
bins of ECMWF spread. Green cells indicate that the null hypothesis is rejected. Red 
cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = KS-
statistic, and P = P-value. 
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Table 5.   Statistical Results of ECMWF Spread vs. Official FTE (4 bins) 

 
 T-test and KS-test results comparing official FTE error distributions obtained 
via four bins of ECMWF spread. Green cells indicate that the null hypothesis is rejected. 
Red cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = 
KS-statistic, and P = P-value. 
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Table 6.   Statistical Results of ECMWF Spread vs. Official FTE (5 bins) 

 
T-test and KS-test results comparing official FTE error distributions obtained via five 
bins of ECMWF spread. Green cells indicate that the null hypothesis is rejected. Red 
cells indicate a failure to reject the null hypothesis. Yellow cells indicate a P-value within 
1% of threshold. T-stat = T-statistic, KS-Stat = KS-statistic, and P = P-value. 
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2. TVCN GPCE Radii versus Official FTE 

Results from the statistical testing when dividing TVCN GPCE radii into three 

bins are shown in Table 7. Similar to Table 4, the test results for both the t-test and KS-

test only include two instances where the null hypothesis failed to be rejected across all 

bin comparisons and forecast hours (one of which was within 1% and highlighted in 

yellow). These results also confirm the idea that TC forecasts can be subdivided into 

three ranges of GPCE radii, each with its own distinct error distribution that the MC 

method can draw from to better relay tailored uncertainty information for any given TC. 

Results from the statistical testing when dividing TVCN GPCE radii into four 

bins are shown in Table 8. These results are not quite as strong as those in Table 5 for 

ECMWF ensemble spread with 14 of the 60 tests failing to reject the null hypothesis 

(including two within 1%). While that part is the same as Table 5, the difference is that 

there were six pairs of tests that failed to reject the null hypothesis for the same bin 

comparison and forecast hour—four of which lie within the Bin 2 versus Bin 3 

comparison. While less robust than the results from ECMWF ensemble spread, creating 

four bins of TVCN GPCE radii still provides enough distinctness across forecast hours 

and each bin comparison to be beneficial. It appears that this approach performs best for 

short forecast hours (≤ 36) and struggles some in the midrange forecast hours (48–72). 

Results from the statistical testing when dividing TVCN GPCE radii into five bins 

are shown are shown in Table 9. As with ECMWF ensemble spread, the test results are 

discouraging with 40 of 80 tests failing to reject the null hypothesis. This includes 15 

pairs of tests for the same bin comparison and forecast hour. With 50% of the tests failing 

to support any potential benefit of adding a fifth bin, it seems that four bins is again the 

maximum subdivision that produces distinct error distributions for this data set. 

 

 

 

 



 35

Table 7.   Statistical Results of TVCN GPCE Radii vs. Official FTE (3 Bins) 

 
T-test and KS-test results comparing official FTE error distributions obtained via three 
bins of TVCN GPCE radii. Green cells indicate that the null hypothesis is rejected. Red 
cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = KS-
statistic, and P = P-value. 
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Table 8.   Statistical Results of TVCN GPCE Radii vs. Official FTE (4 Bins) 

 
T-test and KS-test results comparing official FTE error distributions obtained via four 
bins of TVCN GPCE radii. Green cells indicate that the null hypothesis is rejected. Red 
cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = KS-
statistic, and P = P-value. 
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Table 9.   Statistical Results of TVCN GPCE Radii vs. Official FTE (5 Bins) 

 
T-test and KS-test results comparing official FTE error distributions obtained via five 
bins of TVCN GPCE radii. Green cells indicate that the null hypothesis is rejected. Red 
cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = KS-
statistic, and P = P-value. 
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D. ADDITIONAL FINDINGS 

The primary emphasis in this study was to examine the relationship between 

forecast uncertainty and official FTE. However, a few other possible relationships require 

analysis as well. The official ATE and XTE are also contained in this data set and may 

relate to forecast uncertainty differently than the FTE. In addition, the uncertainty 

measurements may give more definitive information about the errors of the parent model. 

As such, the ECMWF ensemble spread was compared to official ATE, official XTE, and 

ECMWF EMN error while TVCN GPCE radii was compared to official ATE, official 

XTE, and TVCN error. 

1. Using ATE and XTE 

A similar statistical analysis was performed on the ATE and XTE as was done on 

FTE. Figures 12 and 13 are scatterplots of ECMWF ensemble spread vs. official ATE 

and vs. official XTE, respectively. Note that unlike Figures 4 and 5, which use official 

FTE, not only does the data fail to follow the one-to-one lines, but it does not follow any 

particular pattern. Visual inspection indicates that there is not a clear relationship 

between ECMWF ensemble spread and either official ATE or XTE.  

Furthermore, Figures 14 and 15 are scatterplots of TVCN GPCE radii vs. official 

ATE and vs. official XTE, respectively. Again, the data in both Figures 14 and 15 fails to 

display any sort of discernable pattern from which a relationship can be established.  
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Figure 12.  ECMWF Ensemble Spread vs. Official ATE at 60 Hours 

 
A scatterplot of ECMWF ensemble spread vs. official ATE with positively and 
negatively sloped one-to-one lines (solid greens).  

Figure 13.  ECMWF Ensemble Spread vs. Official XTE at 60 Hours 

 
A scatterplot of ECMWF ensemble spread vs. official XTE with positively and 
negatively sloped one-to-one lines (solid greens).  
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Figure 14.  TVCN GPCE Radii vs. Official ATE at 60 Hours 

 
A scatterplot of TVCN GPCE radii vs. official ATE with positively and negatively sloped 
one-to-one lines (solid greens).  

Figure 15.  TVCN GPCE Radii vs. Official XTE at 60 Hours 

 
A scatterplot of TVCN GPCE radii vs. official XTE with positively and negatively sloped 
one-to-one lines (solid greens).  
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While visual examination of the scatterplots in Figures 12–15, which plot official 

ATE and XTE with each uncertainty measurement, does not appear to support any 

relationships, statistical testing is still required to verify this hypothesis. The t-test and 

KS-test will be used again to accomplish a more detailed analysis. Similarly to the testing 

of official FTE, the data will be divided into three bins to begin. However, for this round 

of tests, the two-tailed t-test will be used since we can no longer assume that each 

successive bin will have a larger mean error than the previous bin. Due to the fact the 

ATE and XTE can be positive (representing a forecast too fast or too far right) or 

negative (representing a forecast too slow or too far left), the mean may not shift far from 

zero. 

a. ECMWF Ensemble Spread vs. Official ATE 

This comparison failed to reject the null hypothesis for 29 of 40 tests. All but one 

test came to this conclusion in the Bin 1 vs. Bin 2 comparison, thus not only did the mean 

fail to shift, but the distribution shape failed to change as well. These results clear signify 

that no benefit will be attained by creating even three bins. However, 7 of 10 KS-tests 

rejected the null hypothesis when comparing Bin 2 to Bin 3. This suggests that the data 

can be split into two bins which can provide some distinction between the distribution 

shapes. 

b. ECMWF Ensemble Spread vs. Official XTE 

This comparison failed to reject the null hypothesis for 30 of 40 tests. All but two 

tests came to this conclusion in the Bin 1 vs. Bin 2 comparison. As with the previous 

comparison, this shows that neither the mean or distribution shape changed enough to 

become statistically different. The Bin 2 vs. Bin 3 comparison shows similar results. 

Although both the t- and KS-tests reject the null hypothesis for the last three forecast 

hours, the first half of the forecast range shows no benefit at all. These results also signify 

that no benefit will be attained by creating three bins, and it appears unlikely that a well-

defined relationship can be established from even two bins. 
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c. TVCN GPCE Radii vs. Official ATE 

This comparison failed to reject the null hypothesis for 34 of 40 tests. Neither bin 

comparison showed very much distinction using either test. These results clearly signify 

that no benefit will be attained by creating even three bins. 

d. TVCN GPCE Radii vs. Official XTE 

This comparison failed to reject the null hypothesis for 20 of 40 tests. While this 

comparison rejected the highest number of null hypotheses out of these last four 

comparisons, the Bin 1 vs. Bin 2 comparison still lacked much distinction. The majority 

of distinction was found in the Bin 2 vs. Bin 3 comparison where 14 of 20 tests rejected 

the null hypothesis (8 of which came from the KS-test). These results indicate that for 

almost all forecast hours, the error distributions of Bin 2 vs. Bin 3 had different 

distribution shapes (and different means for most forecast hours). These results give 

cause for investigating the potential benefit attained by creating two bins, but adding a 

third bin is clearly not beneficial. 

2. ECMWF Ensemble Spread vs. ECMWF EMN Error 

In Table 10 are the results from the statistical testing when dividing ECMWF 

ensemble spread into three bins and comparing each bin’s sample mean and distribution 

of ECMWF EMN errors. Only two tests failed to reject the null hypothesis. This was 

comparable to the comparisons using official FTE. These results indicate that three 

ranges ECMWF ensemble spread can successfully provide unique error distributions that 

are associated with the EMN. This suggests that the relationship between uncertainty and 

model error (EMN) or official error is similar. 

Results from the statistical testing when dividing the ECMWF ensemble spread 

into four bins and comparing each bin’s sample mean and distribution of ECMWF EMN 

errors are shown in Table 11. Only 8 of 60 tests failed to reject the null hypothesis with 

only two pairs of tests doing so for the same bin comparison at the same time. These 

results are the strongest of all methods utilizing four bins. In comparison, ECMWF 

ensemble spread vs. official FTE failed to reject the null hypothesis for 14 of 60 tests. 
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This suggests that a better defined relationship may exist between the forecast model 

uncertainty and error rather than a the model uncertainty and official error. 

In Table 12, the results from the statistical testing when dividing the ECMWF 

ensemble spread into five bins and comparing each bin’s sample mean and distribution of 

ECMWF EMN errors are shown. As indicated in Table 12, 23 of 80 tests failed to reject 

the null hypothesis; however, three of those tests were within 1% of doing so. These tests 

include 8 pairs of tests that failed to reject the null hypothesis for the same bin 

comparison at the same time (only six pairs if tests within 1% are considered). While 

these results are not concrete, they suggest that there is a good possibility of attaining 

benefit from using five bins—especially through forecast hour 84. These results also 

indicate that ECWMF ensemble spread predicts EMN error better than official error at 

this resolution. This suggests that the ECMWF ensemble spread is more indicative of its 

own model’s performance rather than official forecast performance that utilizes more 

information than just the ECMWF model. 
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Table 10.   Statistical Results of ECMWF Ensemble Spread vs. EMN Error (3 Bins) 

 
T-test and KS-test results comparing ECMWF EMN error distributions obtained via three 
bins of ECMWF ensemble spread. Green cells indicate that the null hypothesis is 
rejected. Red cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-
Stat = KS-statistic, and P = P-value. 
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Table 11.   Statistical Results of ECMWF Ensemble Spread vs. EMN Error (4 Bins) 

 
T-test and KS-test results comparing ECMWF EMN error distributions obtained via four 
bins of ECMWF ensemble spread. Green cells indicate that the null hypothesis is 
rejected. Red cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-
Stat = KS-statistic, and P = P-value. 
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Table 12.   Statistical Results of ECMWF Ensemble Spread vs. EMN Error (5 Bins) 

 
T-test and KS-test results comparing ECMWF EMN error distributions obtained via five 
bins of ECMWF ensemble spread. Green cells indicate that the null hypothesis is 
rejected. Red cells indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-
Stat = KS-statistic, and P = P-value. 
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3. TVCN GPCE Radii vs. TVCN Error 

In Table 13 are shown the results from the statistical testing when dividing TVCN 

GPCE radii into three bins and comparing each bin’s sample mean and distribution of 

TVCN errors. Only two tests failed to reject the null hypothesis, and one of those was 

within 1%. These results, similarly to all other comparisons except those involving ATE 

and XTE, indicate that three ranges of TVCN GPCE radii can successfully predict unique 

error distributions for the TVCN. 

Shown in Table 14 are the results from the statistical testing when dividing TVCN 

GPCE radii into four bins and comparing each bin’s sample mean and distribution of 

TVCN errors. Only 9 of 60 tests failed to reject the null hypothesis (one within 1%). Of 

those, only two pairs of tests failed to reject the null hypothesis for the same bin 

comparison at the same forecast hour. These results indicate that establishing four bins of 

GPCE radii can add benefit to the TVCN consensus forecast. The strength of this 

relationship is comparable to that between ECMWF ensemble spread vs. EMN error and 

slightly better than that between GPCE radii vs. official FTE. 

Results from the statistical testing when dividing TVCN GPCE radii into five bins 

and comparing each bin’s sample mean and distribution of TVCN errors are shown in 

Table 15. When utilizing five bins, 34 of 80 tests fail to reject the null hypothesis with 13 

pairs of tests doing so for the same bin comparison and forecast hour. Furthermore, half 

of the forecast hours only maintain distinction between two of the bin comparisons. 

These results indicate that four bins was the maximum supported by this data pool. While 

these results are similar to those found between GPCE vs. official FTE, this relationship 

is not as strong as that found between ECMWF ensemble spread vs. EMN error. This 

suggests ECMWF ensemble spread may be a better predictor of error than TVCN GPCE 

radii. 
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Table 13.   Statistical Results of TVCN GPCE Radii vs. TVCN Error (3 Bins) 

 
T-test and KS-test results comparing TVCN error distributions obtained via three bins of 
TVCN GPCE radii. Green cells indicate that the null hypothesis is rejected. Red cells 
indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = KS-statistic, 
and P = P-value. 
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Table 14.   Statistical Results of TVCN GPCE Radii vs. TVCN Error (4 Bins) 

 
T-test and KS-test results comparing TVCN error distributions obtained via four bins of 
TVCN GPCE radii. Green cells indicate that the null hypothesis is rejected. Red cells 
indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = KS-statistic, 
and P = P-value. 
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Table 15.   Statistical Results of TVCN GPCE radii vs. TVCN Error (5 Bins) 

 
T-test and KS-test results comparing TVCN error distributions obtained via five bins of 
TVCN GPCE radii. Green cells indicate that the null hypothesis is rejected. Red cells 
indicate a failure to reject the null hypothesis. T-stat = T-statistic, KS-Stat = KS-statistic, 
and P = P-value.  
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V. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSIONS 

Since the inherent error present in all forecasts will never be eliminated, 

forecasters must do their best to characterize and quantify the associated uncertainty with 

weather forecasts—especially TC forecasts which directly influence decisions that affect 

millions of people and billions of dollars. This thesis aimed to improve the tools which 

TC forecasters at NHC use operationally. This was accomplished by creating the 

maximum number of bins (ranges of uncertainty measurements) that would contain 

unique error distributions as measured by mean and shape. These bins and associated 

error distributions could then be utilized by the MC method where 1,000 errors are pulled 

and applied to NHC’s official forecast. The result is a tailored TC track forecast with 

improved estimates of uncertainty for each forecast disseminated. In the end, these 

improvements directly advance the NHC WSP products which are used by decision 

makers to mitigate TC impacts.  

This thesis found that the maximum number of bins that will still maintain unique 

error distributions are as follows: 

 For ECMWF ensemble spread (using official FTE): 4 bins 

 For ECMWF ensemble spread (using ECMWF EMN error): 5 bins 

 For TVCN GPCE radii (using official FTE): 4 bins 

 For TVCN GPCE radii (using TVCN error): 4 bins 

This thesis also found that using official ATE and XTE to populate the same bins 

of uncertainty did not produce statistically different distributions at even the three bin 

level. This suggests that official ATE and XTE are not very well related with either 

measurement of uncertainty analyzed in this work.  

Although the desire to develop a continuous uncertainty-error relationship was not 

fully realized, the results of this thesis are still promising. NHC currently uses this 

approach but with only three bins. This research paves the way for testing the possibility 

of expanding to four bins of uncertainty for operational use.  
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Another promising finding from this research is that using ECMWF ensemble 

spread as the measurement of uncertainty coupled with the errors produced from the 

ECMWF EMN, produced the strongest relationship and showed additional benefit out to 

five bins. While the original purpose of this thesis was to establish such a relationship 

with official FTE so that the MC method could be better applied to each new official TC 

forecast, this alternative relationship can still greatly aid NHC forecasters. By running the 

MC method on the ECMWF EMN forecast, the already superior ECMWF model output 

can be further improved to be used as a predominate tool during the creation of official 

forecasts. 

B. RECOMMENDATIONS 

While the longer data sample spanning nine years and the use of ECMWF spread 

show promise that a more continuous uncertainty-error relationship can be derived, there 

are several things that might improve these results. Future research should investigate: 

 Different methods of measuring and/or binning the measurements of 
uncertainty based on some other storm characteristic (e.g. intensity) 

 Omitting outliers in the data, or determining which are most problematic 

 Filtering data to exclude errors produced from model runs with a limited 
number of ensemble members 

 Splitting uncertainty measurements into along- and cross-track values and 
testing them against ATE and XTE. 
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APPENDIX. RANGES FOR BINS OF UNCERTAINTY 

Table 16.   ECMWF Ensemble Spread Ranges (3 Bins) 

 

Table 17.   ECMWF Ensemble Spread Ranges (4 Bins) 

 

Table 18.   ECMWF Ensemble Spread Ranges (5 Bins) 
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Table 19.   TVCN GPCE Radii Ranges (3 Bins) 

 

Table 20.   TVCN GPCE Radii Ranges (4 Bins) 

 
 

Table 21.   TVCN GPCE Radii Ranges (5 Bins) 
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